ON THE FIRST KIND OF RELATIVE k-JET COHOMOLOGY OF SINGULARITIES OF MAPGERMS

Citation:

Xiao Erjian.ON THE FIRST KIND OF RELATIVE k-JET COHOMOLOGY OF SINGULARITIES OF MAPGERMS[J].Chinese Annals of Mathematics B,1986,7(1):24~33
Page view: 786        Net amount: 704

Authors:

Xiao Erjian;
Abstract: In this paper the author generalizes the computations about the firs kind of k-jet cohomology in [5] to mapgerms. The main results are as follows: $$\[{H^o}({\Omega _{\varphi ,k - ,x}})\]) = \underbrace {{C_{M,x}} \oplus \cdots \oplus }_{( + k)}{C_{M,x}},\]$$ $$\[{H^p}({\Omega _{\varphi ,k - ,x}}) = 0,0 < p < m - \dim {C_{M,x}}/I{(\varphi )_x} - 1\begin{array}{*{20}{c}} {or}&{p = m.}\end{array}\]$$ There exists an integer s, such that $$\[{(I{(\varphi )_x})^s}{H^p}({\Omega _{\varphi ,k - ,x}}),m - \dim {C_{M,x}}/I{(\varphi )_x} - 1 \le p \le m - 1.\]$$ Hence, $\[{H^p}({\Omega _{\varphi ,k - ,x}})\]$ are finitely generated $\[{C_{M,x}}/{(I{(\varphi )_x})^s}\]$-modules. If $\[{\dim _C}{C_{M,x}}/I{(\varphi )_x} < \infty \]$ then $$\[{H^p}({\Omega _{\varphi ,k - ,x}}) = 0,0 < p < m - 1\begin{array}{*{20}{c}}{or}&{p = m}\end{array},\]$$ $$\[{\dim _C}{H^{m - 1}}({\Omega _{\varphi ,k - ,x}}) = \sum\limits_r^{k - m} {{{\dim }_C}\Omega _{\varphi ,k - r - m,x}^{m,r}} < \infty .\]$$

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持