ESTIMATE OF $\[{d_0}/{d^'}\]$ FOR STARLIKE FUNCTIONS

Citation:

Huang Xinzhong.ESTIMATE OF $\[{d_0}/{d^'}\]$ FOR STARLIKE FUNCTIONS[J].Chinese Annals of Mathematics B,1986,7(2):139~146
Page view: 891        Net amount: 719

Authors:

Huang Xinzhong;
Abstract: Let $\[{S^*}\]$ be the class of functions $\[f(t)\]$ analytic, univalent in the unit disk $\[\left| z \right| < 1\]$ and map $\[\left| z \right| < 1\]$ onto a region which is starlike with respect to $\[w = 0\]$ and is denoted as $\[{D_f}\]$. Let $\[{r_0} = {r_0}(f)\]$ be the radius of convexity of $\[f(2)\]$. In this note, the author proves the following result: $$\[\frac{{{d_0}}}{{{d^*}}} \ge 0.4101492\]$$ where $\[{d_0} = \mathop {\min }\limits_{\left| z \right| = {r_0}} f(z),{d^*} = \mathop {\inf }\limits_{\beta \in {D_f}} \left| \beta \right|\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持