NONLINEAR INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEM

Citation:

Li Dening.NONLINEAR INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEM[J].Chinese Annals of Mathematics B,1986,7(2):147~159
Page view: 950        Net amount: 768

Authors:

Li Dening;

Foundation:

The result of this paper had ben presented at the seminar of PDE, Mathematics Institute, Fudan University, June, 1983.
Abstract: Consider the nonlinear initial-boundary value problem for quasilinear hyperbolic system: $$\[(*)\left\{ {\begin{array}{*{20}{c}} {{\partial _t}u = \sum\limits_{j = 1}^n {{A_j}(u){\partial _{{x_i}}}u} + F,in(0,T) \times \Omega ,}\{u(0) = 0,P(u)u{|_{\partial \Omega }} = g.} \end{array}} \right.\]$$ Let $\[k \ge 2\left[ {\frac{n}{2}} \right] + 6,(F,g) \in {H^k}({B_ + };\Omega ) \times {H^k}({B_ + };\partial \Omega ),\]$, and their traces at $\[t = 0\]$ are zero up to the order $\[k - 1\]$. If for $\[u = 0\]$, the problem(*) at $\[t = 0\]$ is a Kreiss hyperbolic system, and the boundary conditions satisfy the uniformly Lopatinsky criteria, then there exists a $\[T > 0\]$ such that(*) has a unique $\[{H^2}\]$ solution in $\[(0,T)\]$. In the Appendix, for symmetric hyperbolic systems, a comparison between the uniformly Lopatinsky condition and the stable admissible condition is given.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持