|
| |
ON THE DIOPHANTINE EQUATION $\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$ |
| |
Citation: |
Shen Zun.ON THE DIOPHANTINE EQUATION $\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$[J].Chinese Annals of Mathematics B,1986,7(2):213~220 |
Page view: 777
Net amount: 762 |
Authors: |
Shen Zun; |
|
|
Abstract: |
In this paper,, the author proves the following result:
Let $\[{E_{a,k}}(N)\]$ denote the number of natural numbers $\[n \le N\]$ for which equation
$$\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$$
is insolable in positive integers $\[{x_i}(i = 0,1, \cdots ,k)\]$.Then
$$\[{E_{a,k}}(N) \ll N\exp \{ - C{(\log N)^{1 - \frac{1}{{k + 1}}}}\} \]$$
where the implied constant depends on a and K. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|