ON THE DIOPHANTINE EQUATION $\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$

Citation:

Shen Zun.ON THE DIOPHANTINE EQUATION $\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$[J].Chinese Annals of Mathematics B,1986,7(2):213~220
Page view: 777        Net amount: 762

Authors:

Shen Zun;
Abstract: In this paper,, the author proves the following result: Let $\[{E_{a,k}}(N)\]$ denote the number of natural numbers $\[n \le N\]$ for which equation $$\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$$ is insolable in positive integers $\[{x_i}(i = 0,1, \cdots ,k)\]$.Then $$\[{E_{a,k}}(N) \ll N\exp \{ - C{(\log N)^{1 - \frac{1}{{k + 1}}}}\} \]$$ where the implied constant depends on a and K.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持