|
| |
ON THE DIOPHANUNE EQUATION $\[\sum\limits_{i = 0}^N {\frac{{{x_i}}}{{{d_i}}}} \equiv 0\]$ (mod 1) AND ITS APPLICATIONS |
| |
Citation: |
Sun Qi,Wan Daqing,Ma Degang.ON THE DIOPHANUNE EQUATION $\[\sum\limits_{i = 0}^N {\frac{{{x_i}}}{{{d_i}}}} \equiv 0\]$ (mod 1) AND ITS APPLICATIONS[J].Chinese Annals of Mathematics B,1986,7(2):232~236 |
Page view: 793
Net amount: 906 |
Authors: |
Sun Qi; Wan Daqing;Ma Degang; |
|
|
Abstract: |
The number $\[A({d_1}, \cdots ,{d_n})\]$ of solutions of the equation
$$\[\sum\limits_{i = 0}^n {\frac{{{x_i}}}{{{d_i}}}} \equiv 0(\bmod 1),0 < {x_i} < {d_i}(i = 1,2, \cdots ,n)\]$$
where all the $\[{d_i}s\]$ are positive integers, is of significance in the estimation of the number $\[N({d_1}, \cdots {d_n})\]$ of solutiohs in a finite field $\[{F_q}\]$ of the equation
$$\[\sum\limits_{i = 1}^n {{a_i}x_i^{{d_i}}} = 0,{x_i} \in {F_q}(i = 1,2, \cdots ,n)\]$$
where all the $\[a_i^'s\]$ belong to $\[F_q^*\]$. the multiplication group of $\[F_q^{[1,2]}\]$. In this paper, applying the inclusion-exclusion principle, a greneral formula to compute $\[A({d_1}, \cdots ,{d_n})\]$ is obtained.
For some special cases more convenient formulas for $\[A({d_1}, \cdots ,{d_n})\]$ are also given, for
example, if $\[{d_i}|{d_{i + 1}},i = 1, \cdots ,n - 1\]$, then
$$\[A({d_1}, \cdots ,{d_n}) = ({d_{n - 1}} - 1) \cdots ({d_1} - 1) - ({d_{n - 2}} - 1) \cdots ({d_1} - 1) + \cdots + {( - 1)^n}({d_2} - 1)({d_1} - 1) + {( - 1)^n}({d_1} - 1).\]$$ |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|