RINGS OF HILBERT MODULAR FORMS ON TOTALLY REAL NUMBER FIELDS WITH ODD DEGREE

Citation:

Feng Keqin.RINGS OF HILBERT MODULAR FORMS ON TOTALLY REAL NUMBER FIELDS WITH ODD DEGREE[J].Chinese Annals of Mathematics B,1986,7(3):259~266
Page view: 976        Net amount: 740

Authors:

Feng Keqin;
Abstract: E. Thomas and A. T. Vasques proved the following result: For any totally real cubic number field K and subgroup $\[\Gamma \]$ of modular type of $\[PS{L_2}({O_K})\]$, the ring of Hilbert modular forms for $\[\Gamma \]$ over k s not Gorenstein ring. In thE present paper the author comes to the same conclusion for any totally real number field of odd degree

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持