|
| |
THE FIRST BOUNDARY VALUE PROBLEM FORSOLUTIONS OF DEGENERATE QUASUJNEARPARABOLIC EQUATIONS |
| |
Citation: |
Dong Guangchang.THE FIRST BOUNDARY VALUE PROBLEM FORSOLUTIONS OF DEGENERATE QUASUJNEARPARABOLIC EQUATIONS[J].Chinese Annals of Mathematics B,1986,7(3):277~302 |
Page view: 893
Net amount: 742 |
Authors: |
Dong Guangchang; |
Foundation: |
This work is under the financial support of the Chinese National Foundation of Science |
|
|
Abstract: |
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation
$$\[\left\{ {\begin{array}{*{20}{c}}
{\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}}
{}&{(x,t) \in [0,T]}
\end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T}
\end{array}} \right.\]$$
$$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}}
{and}&{v(u) \to 0\begin{array}{*{20}{c}}
{as}&{u \to 0}
\end{array}}
\end{array}} \right)\]$$
under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$ |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|