ON FINITE DIFFUSING SPEED FOR UNIFORMLY DEGENERATE QUASILINEAR PARABOLIC EQUATIONS

Citation:

Chen Yazhe.ON FINITE DIFFUSING SPEED FOR UNIFORMLY DEGENERATE QUASILINEAR PARABOLIC EQUATIONS[J].Chinese Annals of Mathematics B,1986,7(3):318~329
Page view: 867        Net amount: 846

Authors:

Chen Yazhe;
Abstract: In this paper, the author studies the quasilinear parabolic equation $$\[{u_t} = {({a_{ij}}(x,t,u){u_{{x_j}}})_i} + {b_i}(x,t,u){u_{{x_i}}} + c(x,t,u)\]$$ In $\[{Q^T} = \{ (x,t)|x \in {R^N},0 < t \le T\} \]$, which. is uniformly degenerate w herever $\[u = 0\]$. Under some conditions of the coefficients of the equation and the presupposition $\[0 \le u(x,t) \le M,\]$, the author proves that non-negative weak solutions, $\[u(x,t)\]$, to the equation satisfy the estimation that, for any $\[({x^0},{t^0}) \in {Q^T}\]$, $$\[\frac{1}{C}\min \left\{ {\mathop {\inf }\limits_{|x - {x^0}| \le b\sqrt {{t^0}} } u(x,0),1} \right\} \le u({x^0},{t^0}) \le C\mathop {\sup }\limits_{|x - {x^0}| \le b\sqrt {{t^0}} } u(x,0),\]$$ where the constants b and C depend only upon M, T and the coefficients. It is a more exact description on the finite diffusing speed for the equation which has not been obtained even for one-dimensional porous medium e uations.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持