SEGAL ALGEBRA $\[{A_{1,p}}(G)\]$ AND ITS MULTIPLIERS

Citation:

Ouyang Guangzhong.SEGAL ALGEBRA $\[{A_{1,p}}(G)\]$ AND ITS MULTIPLIERS[J].Chinese Annals of Mathematics B,1986,7(3):365~372
Page view: 841        Net amount: 741

Authors:

Ouyang Guangzhong;
Abstract: Let G be a locally compactb abelian group and $\[{A_p}(G)\]$ the p-Fourier algeba of Herz. This pepar studies the space $\[{A_{1,p}}(G) = {L_1}(G) \cap {A_p}(G)\]$ with convolution product. It is proved that $\[{A_{1,p}}(G)\]$ is a character Segal algebra. Moreover, for the multipliers of $\[{A_{1,p}}(G)\]$ the author proves that $\[M({A_{1,p}}(G),{L_1}(G)) = M(G)\]$ and $\[M({A_{1,p}}(G),{A_{1,p}}(G)) = M(G)\]$ provided G is noncompact. If G is discrete, then $\[M({A_{1,p}}(G),{L_1}(G)) = {A_{1,p}}(G)\$ and $\[M({A_{1,p}}(G),{A_{1,p}}(G)) = {A_{1,p}}(G)\]$

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持