ON ADMISSffilLITY OF VARIANCE COMPONENTS ESTIMATES

Citation:

Ye Cinan.ON ADMISSffilLITY OF VARIANCE COMPONENTS ESTIMATES[J].Chinese Annals of Mathematics B,1986,7(3):384~396
Page view: 801        Net amount: 747

Authors:

Ye Cinan;
Abstract: Suppose that there is a variance components model $$\[\left\{ {\begin{array}{*{20}{c}} {E\mathop Y\limits_{n \times 1} = \mathop X\limits_{n \times p} \mathop \beta \limits_{p \times 1} }\{DY = \sigma _2^2{V_1} + \sigma _2^2{V_2}} \end{array}} \right.\]$$ where $\[\beta \]$,$\[\sigma _1^2\]$ and $\[\sigma _2^2\]$ are all unknown, $\[X,V > 0\]$ and $\[{V_2} > 0\]$ are all known, $\[r(X) < n\]$. The author estimates simultaneously $\[(\sigma _1^2,\sigma _2^2)\]$. Estimators are restricted to the class $\[D = \{ d({A_1}{A_2}) = ({Y^'}{A_1}Y,{Y^'}{A_2}Y),{A_1} \ge 0,{A_2} \ge 0\} \]$. Suppose that the loss function is $\[L(d({A_1},{A_2}),(\sigma _1^2,\sigma _2^2)) = \frac{1}{{\sigma _1^4}}({Y^'}{A_1}Y - \sigma _1^2) + \frac{1}{{\sigma _2^4}}{({Y^'}{A_2}Y - \sigma _2^2)^2}\]$. This paper gives a necessary and sufficient condition for $\[d({A_1},{A_2})\]$ to be an equivariant D-asmissible estimator under the restriction $\[{V_1} = {V_2}\]$, and a sufficient condition and a necessary condition for $\[d({A_1},{A_2})\]$ to equivariant D-asmissible without the restriction.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持