|
| |
ON ADMISSffilLITY OF VARIANCE COMPONENTS ESTIMATES |
| |
Citation: |
Ye Cinan.ON ADMISSffilLITY OF VARIANCE COMPONENTS ESTIMATES[J].Chinese Annals of Mathematics B,1986,7(3):384~396 |
Page view: 801
Net amount: 747 |
Authors: |
Ye Cinan; |
|
|
Abstract: |
Suppose that there is a variance components model
$$\[\left\{ {\begin{array}{*{20}{c}}
{E\mathop Y\limits_{n \times 1} = \mathop X\limits_{n \times p} \mathop \beta \limits_{p \times 1} }\{DY = \sigma _2^2{V_1} + \sigma _2^2{V_2}}
\end{array}} \right.\]$$
where $\[\beta \]$,$\[\sigma _1^2\]$ and $\[\sigma _2^2\]$ are all unknown, $\[X,V > 0\]$ and $\[{V_2} > 0\]$ are all known, $\[r(X) < n\]$. The author estimates simultaneously $\[(\sigma _1^2,\sigma _2^2)\]$. Estimators are restricted to the class $\[D = \{ d({A_1}{A_2}) = ({Y^'}{A_1}Y,{Y^'}{A_2}Y),{A_1} \ge 0,{A_2} \ge 0\} \]$. Suppose that the loss function is $\[L(d({A_1},{A_2}),(\sigma _1^2,\sigma _2^2)) = \frac{1}{{\sigma _1^4}}({Y^'}{A_1}Y - \sigma _1^2) + \frac{1}{{\sigma _2^4}}{({Y^'}{A_2}Y - \sigma _2^2)^2}\]$.
This paper gives a necessary and sufficient condition for $\[d({A_1},{A_2})\]$ to be an equivariant D-asmissible estimator under the restriction $\[{V_1} = {V_2}\]$, and a sufficient condition and a necessary condition for $\[d({A_1},{A_2})\]$ to equivariant D-asmissible without the restriction. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|