SOME PROPERTIES OF THE $\[{l_2}\]$-VALUED LONGJAMES BANACH SPACE $\[J(\eta ,{l_2})\]$

Citation:

Zhao Junfeng.SOME PROPERTIES OF THE $\[{l_2}\]$-VALUED LONGJAMES BANACH SPACE $\[J(\eta ,{l_2})\]$[J].Chinese Annals of Mathematics B,1987,8(4):401~407
Page view: 867        Net amount: 790

Authors:

Zhao Junfeng;
Abstract: The main result of this paper is to show that the bidual $\[J(\eta ,{l_2})\]$ of the long James type $\[{l_2}\]$-valued Banach, space $\[J(\eta ,{l_2})\]$ can be identified with transfinite matrices of scalars $\[{[({b_{a,i}})i \in [0,\omega )]_{a \in [0,\eta )}}\]$ with some conditions and the norm of the element x** in $\[J(\eta ,{l_2})\]$** equals $\[\mathop {\sup }\limits_{\gamma \in [0,\eta )} {\left\| {\sum\limits_{\alpha \in [0,\gamma )} {\sum\limits_{i \in [0,\omega )} {{b_{a,i}}{\phi _{a,i}}} } } \right\|_{J{{(\eta ,l)}^{**}}}}\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持