Sun Xiehua.A NOTE ON A PROBLEM OF BOAS R.P.[J].Chinese Annals of Mathematics B,1987,8(4):468~470
Page view: 885Net amount: 738
Authors:
Sun Xiehua;
Foundation:
Projects Supported by the Science Fund of the Chinese Academy of Sciences.
Abstract:
To answer the rest part of the problem of Boas R. P. on derivative of polynomial, it is shown that if $\[p(z)\]$ is a polynomial of degree n such that $\[\mathop {\max }\limits_{\left| z \right| \le 1} \left| {p(z)} \right| \le 1\]$ and $\[{p(z) \ne 0}\]$ in $\[\left| z \right| \le k,0 < k \le 1\]$, then $\[\left| {{p^'}(z)} \right| \le n/(1 + {k^n})\]$ for $\[\left| z \right| \le 1\]$. The above estimate is sharp and the equation holds for $\[p(z) = ({z^n} + {k^n})/(1 + {k^n})\]$.