ON THE EXPECTED SAMPLE SIZES OF SOME POWER ONE TESTS FOR NORMAL MEAN WITH UNKNOWN VARIANCE

Citation:

Chen Jiading.ON THE EXPECTED SAMPLE SIZES OF SOME POWER ONE TESTS FOR NORMAL MEAN WITH UNKNOWN VARIANCE[J].Chinese Annals of Mathematics B,1987,8(4):471~482
Page view: 826        Net amount: 678

Authors:

Chen Jiading;
Abstract: Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持