2025年5月8日 星期四

 
GLOBAL EXISTENCE OF THE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS IN EXTERIOR DOMAINS

Citation:

Chen Yunmei.GLOBAL EXISTENCE OF THE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS IN EXTERIOR DOMAINS[J].Chinese Annals of Mathematics B,1987,8(4):498~522
Page view: 784        Net amount: 1120

Authors:

Chen Yunmei;
Abstract: This paper deals with the following IBV problem of nonlinear parabolic equation: $$\[\left\{ {\begin{array}{*{20}{c}} {{u_t} = \Delta u + F(u,{D_x}u,D_x^2u),(t,x) \in {B^ + } \times \Omega ,}\{u(0,x) = \varphi (x),x \in \Omega }\{u{|_{\partial \Omega }} = 0} \end{array}} \right.\]$$ where $\[\Omega \]$ is the exterior domain of a compact set in $\[{R^n}\]$ with smooth boundary and F satisfies $\[\left| {F(\lambda )} \right| = o({\left| \lambda \right|^2})\]$, near $\[\lambda = 0\]$. It is proved that when $\[n \ge 3\]$, under the suitable smoothness and compatibility conditions, the above problem has a unique global smooth solution for small initial data. Moreover, It is also proved that the solution has the decay property $\[{\left\| {u(t)} \right\|_{{L^\infty }(\Omega )}} = o({t^{ - \frac{n}{2}}})\]$, as $\[t \to + \infty \]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持