COMPLETELY POSITIVE MAPS AND$*$-OMORPHISM OF $\[{C^*}\]$-ALGEBRAS

Citation:

Wu Liangsen.COMPLETELY POSITIVE MAPS AND$*$-OMORPHISM OF $\[{C^*}\]$-ALGEBRAS[J].Chinese Annals of Mathematics B,1988,9(1):27~31
Page view: 826        Net amount: 748

Authors:

Wu Liangsen;
Abstract: Let $A$, $B$ be unital $\[{C^*}\]$-algebras. $\[{\chi _A} = \{ \varphi |\varphi \]$ are all completely postive linear maps from $\[{M_n}(C)\]$ to $A$ with $\[\left\| {a(\varphi )} \right\| \le 1\]$ $}$. $\[(a(\varphi ) = \left( {\begin{array}{*{20}{c}} {\varphi ({e_{11}})}& \cdots &{\varphi ({e_{1n}})}\{}& \cdots &{}\{\varphi ({e_{n1}})}& \cdots &{\varphi ({e_{nn}})} \end{array}} \right),\]$ where $\[\{ {e_{ij}}\} \]$ is the matrix unit of $\[{M_n}(C)\]$. Let $\[\alpha \]$ be the natural action of $\[SU(n)\]$ on $\[{M_n}(C)\]$ For $\[n \ge 3\]$, if $\[\Phi \]$ is an $\[\alpha \]$-invariant affine isomorphism between $\[{\chi _A}\]$ and $\[{\chi _B}\]$, $\[\Phi (0) = 0\]$, then $A$ and $B$ are $\[^*\]$-isomorphic In this paper a counter example is given for the case $\[n = 2\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持