A SORT OF POLYNOMIAL IDENTITIES OF $\[{M_n}(F)\]$ WITH CHAR $\[F \ne 0\]$

Citation:

Chang Qing.A SORT OF POLYNOMIAL IDENTITIES OF $\[{M_n}(F)\]$ WITH CHAR $\[F \ne 0\]$[J].Chinese Annals of Mathematics B,1988,9(2):161~166
Page view: 950        Net amount: 729

Authors:

Chang Qing;
Abstract: Let $F$ denote a field, finite or infinite, with characteristic $\[p \ne 0\]$. In this paper, the author obtains the following result: The symmetric polynomial on $t$ letters $$\[{S_{sym(t)}}({x_1},{x_2}, \cdots ,{x_t}) = \sum\limits_{x \in sym(t)} {{X_{\pi 1}}{X_{\pi 2}} \cdots {X_{\pi t}}} \]$$ is a polynomial identity of $\[{M_n}(F)\]$ when $\[t \ge pn\]$, and this is sharp in the sense that if $\[t \le pn - 1\]$,it is not a polynomial identity of $\[{M_n}(F)\]$.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持