THE GLOBAL SMOOTH SOLUTIONS OF SECOND ORDER QUASILINEAR HYPERBOLIC EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS

Citation:

Qin Tiehu.THE GLOBAL SMOOTH SOLUTIONS OF SECOND ORDER QUASILINEAR HYPERBOLIC EQUATIONS WITH DISSIPATIVE BOUNDARY CONDITIONS[J].Chinese Annals of Mathematics B,1988,9(3):251~269
Page view: 790        Net amount: 762

Authors:

Qin Tiehu;
Abstract: The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary: $$\[{u_{tt}} - \sum\limits_{i,j = 1}^n {{a_{ij}}(Du){u_{{x_i}{x_j}}}} = 0,in(0,\infty ) \times \Omega ,\]$$ $$\[u{|_{{\Gamma _0}}} = 0\]$$ $$\[\sum\limits_{i,j = 1}^n {{a_{ij}}(Du){n_j}{u_{{x_i}}} + b(Du){u_i}{|_{{\Gamma _i}}}} = 0,\]$$ $$\[u{|_{t = 0}} = \varphi (x),{u_t}{|_{t = 0}} = \psi (x),in\Omega \]$$ where $\[\partial \Omega = {\Gamma _0} \cup {\Gamma _1},b(Du) \ge {b_0} > 0\]$. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持