THE FIRST EIGENVALUE OF AN IRREDUCIBLE HOMOGENEOUS MANIFOLD

Citation:

Shen Zhongmin.THE FIRST EIGENVALUE OF AN IRREDUCIBLE HOMOGENEOUS MANIFOLD[J].Chinese Annals of Mathematics B,1988,9(3):270~273
Page view: 906        Net amount: 775

Authors:

Shen Zhongmin;
Abstract: Let $M$ be an n-dimensional compact minimal submanifold in the unit sphere. It is shown that the dismeter and volnme of $M$ satisfy $$\[d \ge \frac{\pi }{2} + C(n)\frac{{{d^n}}}{{{d^n} + V}}\]$$ An application is that if $M$ is an n-dimensional compact irreducible homogeneous manifold, the first eigenvalue $\[{\lambda _1}\]$ of $M$ satisfies In the above two eases, $\[C{(n)^'}\]$ are the same constants depending only on n.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持