EXISTENCE AND NON-EXISTENCE OF GLOBAL SMOOTH SOLUTIONS FOR QUASILINEAR HYPERBOLIC SYSTEMS

Citation:

Lin Longwei,Zheng Yongshu.EXISTENCE AND NON-EXISTENCE OF GLOBAL SMOOTH SOLUTIONS FOR QUASILINEAR HYPERBOLIC SYSTEMS[J].Chinese Annals of Mathematics B,1988,9(3):372~377
Page view: 845        Net amount: 955

Authors:

Lin Longwei; Zheng Yongshu

Foundation:

Projects Supported by the Science Fund of the Chinese Academy of Sciences and the Science Fund of Fukien Province.
Abstract: Consider initial valueprobiom $\[{v_t} - {u_x} = 0,{u_t} + p{(v)_x} = 0,(E),v(x,0) = {v_0}(x),u(x,0) = {u_0}(x),(I)\]$, where $\[A \ge 0,p(v) = {K^2}{v^{ - \gamma }},K > 0,0 < \gamma < 3.\]$. As $\[0 < \gamma \le 1\]$, the authors give a sufficient condition for that $\[(E)\]$, (I) to have a unique global smooth solution. As $\[1 \le \gamma < 3\]$, a necessary condition is given for that.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持