AUTOMORPHISMS OF $\[SL(2,K)\]$ OVER SKEW FIELDS

Citation:

Wu Xiaolong.AUTOMORPHISMS OF $\[SL(2,K)\]$ OVER SKEW FIELDS[J].Chinese Annals of Mathematics B,1988,9(4):436~441
Page view: 944        Net amount: 638

Authors:

Wu Xiaolong;
Abstract: In this paper, the author proves the following result Let $K$ be a skew field and $\[\Lambda \]$ be an automorphism of $\[SL(2,K)\]$. Then there exists $\[A \in GL(2,K)\]$, an automorphism $\[\sigma \]$ or an anti-automorphism $\[\tau \]$ of $\[K\]$, such that $\[\Lambda \]$ is of the form $$\[\Lambda X = A{X^\sigma }{A^{ - 1}}\]$$ for all $$\[X \in SL(2,K)\]$$ or $$\[\Lambda X = A{({X^{{\tau _1}}})^{ - 1}}{A^{ - 1}}\]$$ for all $$\[X \in SL(2,K)\]$$ where $\[{X^\sigma },{X^\tau }\]$ are the matrices obtained by applying $\[\sigma \]$, $\[\tau \]$ on X respectively and $\[{X^'}\]$ is the transpose of X.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持