|
| |
ON A CONJECTURE OF F. NEVANLINNA CONCERNING DEFICIENT FUNCTION (II) |
| |
Citation: |
Jiu Lu,Dai Chongji.ON A CONJECTURE OF F. NEVANLINNA CONCERNING DEFICIENT FUNCTION (II)[J].Chinese Annals of Mathematics B,1988,9(4):452~455 |
Page view: 864
Net amount: 836 |
Authors: |
Jiu Lu; Dai Chongji |
|
|
Abstract: |
The paper proves on the basis of [1] the following theorem: Let $\[f(z)\]$ be an entire function of lower order $\[\mu < \infty \]$, and $\[{a_i}(z)(l = 1,2, \cdots ,k)\]$ be meromorphic functions which satisfy $\[T(r,{a_i}(z)) = o\{ T(r,f)\} \]$. If
$$\[\sum\limits_{i = 1}^k {\delta ({a_i}(z),f) = 1\begin{array}{*{20}{c}}
{({a_i}(z) \ne \infty )}&{(1)}
\end{array}} \]$$
then the deficiencies $\[\delta ({a_i}(z),f)\]$ are equal to $\[\frac{{{n_1}}}{\mu }\]$, where $\[{n_i}\]$ is an integer,$\[l = 1,2, \cdots ,k\]$. |
Keywords: |
|
Classification: |
|
|
Download PDF Full-Text
|
|
|
|