ISOPARAMETRIC HYPERSURFACES IN $\[C{P^n}\]$ WITH CONSTANT PRINCIPAL CURVATURES

Citation:

Li Zhenqi.ISOPARAMETRIC HYPERSURFACES IN $\[C{P^n}\]$ WITH CONSTANT PRINCIPAL CURVATURES[J].Chinese Annals of Mathematics B,1988,9(4):485~493
Page view: 826        Net amount: 766

Authors:

Li Zhenqi;

Foundation:

Project supported by Science Fund of the Chinese Academy of Sciences.
Abstract: This paper proves that the number of distinct principal curvatures of a real isoparametric hypersurface in $\[C{P^n}\]$ with constant principal curvatures can be only 2, 3 or 5. The preimage of such hypersurface under the Hopf fibration is an isoparametric hypersurface in $\[{S^{2n + 1}}\]$ with 2 or 4 disinct principal curvatures. For real isopariametric hypersurfaces in $\[C{P^n}\]$ with 5 distinct constant principal curvatures a local structure theorem is given.

Keywords:


Classification:

Download PDF Full-Text

主管单位:国家教育部 主办单位:复旦大学 地址:220 Handan Road, Fudan University, Shanghai, China E-mail:edcam@fudan.edu.cn

本系统由北京勤云科技发展有限公司提供技术支持